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We consider steady non-axisymmetric source-sink flow of a perfect gas in a 
rapidly rotating circular cylinder for the case in which the sources and the sinks 
are distributed on the top and bottom. We apply a linearized analysis to a small 
perturbation from the state of rigid-body rotation. We show that the radial 
pressure gradient plays an important role in the determination of the axisym- 
metric part of the flow field and that the effects of viscosity and thermal conduc- 
tivity govern the overall configuration of the non-axisymmetric part. We also 
show that the transport of gas in the main inner flow is axial and that radial 
transport is confined to the horizontal boundary layers. 

1. Introduction 
The study of gas flow in a rapidly rotating circular cylinder is important in 

relation to gas centrifuges used for the enrichment of uranium. Barcilon & 
Pedlosky (1967) and Homsy & Hudson (1969) studied this flow within the 
Boussinesq approximation. They delineated the parameter ranges in which the 
effect of thermal conduction is more important than that of thermal convection 
or vice versa, and gave a detailed discussion of the typical flow configurations. 
Sakurai & Matsuda (1974, henceforth referred to as I) showed that use of the 
Roussinesq approximation is not justified for practical cases, and proposed a 
widely applicable method of solution. Although these studies clarified many 
interesting aspects, they did not take into account the effect of the source-sink 
distribution, which is the crucial mechanical element of the gas centrifuge. 

As was shown by Cohen (1951), we can calculate the separation power of a gas 
centrifuge of countercurrent type once we know the distribution of the axial 
velocity. Here, the distribution of the axial velocity is to be determined subject 
to the effect of the source-sink distribution on the cylinder walls. The effect of 
a side-wall distribution in the case of an incompressible fluid was studied by 
Barcilon (1967), Hide (1968) and Kuo & Veronis (1971), and we can find areview 
of their investigations in Greenspan (1968, p. 106). They showed that the trans- 
port of fluid from the source to the sink is restricted to the boundary layer in the 
case of a multiconnected region whereas this is not the case for a singly connected 
region. 

Recause some kinds of gas centrifuge have their source-sink distributions on 
the top and the bottom, it is necessary to study the effect of such distributions. 
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As is shown below, their effect has several aspects which are interesting from 
a purely gasdynamical viewpoint, 

The problem studied in this paper is steady source-sink flow of a perfect gas 
in a circular cylinder which rotates around the vertical axis of symmetry and 
has source-sink distributions on the top and bottom. As in I, we assume that 
the angular velocity of the cylinder is so large that the radial pressure scale height 
is smaller than the radius of the cylinder whereas the vertical scale height is larger 
than the height of the cylinder. We assume that the viscosity and thermal con- 
ductivity are small and depend only on the temperature, and that the Prandtl 
number and the ratio of the radius to the height of the cylinder are of order unity. 

In  the formulation of the problem, we describe the source-sink distribution in 
terms of domains on which the axial component of the velocity is non-vanishing 
whereas the horizontal components do vanish. This property of the source-sink 
velocity is realized if the gas flows into or out of the cylinder through porous 
media. To avoid the appearance of vertical shear layers which affect the main 
inner flow, we assume that the magnitude of the non-dimensional source-sink 
velocity is of order E* (where E is the Ekman number) and the distributions of 
the axial velocity on the top and the bottom are sufficiently continuous functions 
of the plane variables r and 8. To avoid the appearance of a side-wall boundary 
layer, we also assume that the source-sink velocity vanishes on the periphery of 
the top and the bottom. We believe that subject to ourrestrictions the velocity 
field does not include any radical variations such as would occur across vertical 
shear layers; this is desirable from an engineering viewpoint. Finally, we assume 
that the temperature of the cylinder is uniform, because the effect of a tempera- 
ture difference between the top and bottom is discussed in I and can be superposed 
on the present solution. 

Before going directly into a discussion of the detailed mathematical treatment, 
we want to describe the main qualitative aspects of the non-dimensional flow. 
The flow field is decomposed into axisymmetric and non-axisymmetric parts. 

First let us consider the axisymmetric part. Although the orders of magnitude 
of physical quantities are the same as those in I and the flow field is decomposed 
into a main inner flow and boundary layers similar to those in I, new aspects 
appear in relation to the source-sink distributions. Unlike the situation in I, an 
order-unity pressure gradient appears, corresponding to the driving of gas into 
or out of the cylinder. Through the thermo-geostrophic balance of forces, this 
pressure gradient causes an order-unity zonal motion in the main inner flow with 
respect to the cylinder. This zonal motion causes order-unity radial motion in the 
thermo-Ekman layers of thickness E4 on the horizontal walls. As in I, the 
meridional motion in the main inner flow is axial, and causes order-E$ mass 
transport between the top and bottom. As will be shown in fj 3, the axial velocity 
of the main inner flow is the algebraic mean of the prescribed axial velocities on 
the top and bottom. This is exemplified for three typical cases in figures 1-3. For 
example, in figure 1, half of the mass injected at  the source on the top penetrates 
into the main inner flow while the other half bifurcates into the top boundary 
layer. The former arrives at  the bottom via the main inner flow and flows towards 
the suction point in the bottom boundary layer. The latter flows radially in the 
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FIGURE 2. Meridional cross-section of the axisymmetric part of a source-sink flow of 
countercurrent type. Notation as in figure I .  The cut is assumed to be 0.5. 
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FIGURE 3. Meridional cross-section of the axisymmetric part of a source-sink flow of 
ooncurrent type. Notation as in figure 1. The cut is assumed to be 0.6. 

FIGURE 1. Meridional cross-section of the axisymmetric part of a source-sink flow. Arrows 
show the direction and numbers the magnitude of the mass flow. 
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top boundary layer up to the point just above the suction point on the bottom, 
and flows axially towards the suction point via the main inner flow. Other 
examples can be similarly interpreted. It is interesting that the above aspect of 
the mass transport is the same as that in incompressible flow. The zonal motion 
related to this axial motion, however, is different in the compressible case. 

Let us next consider the non-axisymmetric part of the flow. Although this part 
can lead to no net mass transport, it  is important in order to match the flow with 
the non-axisymmetric source-sink distributions. Because of the coupling with 
the axial component of the velocity, the zonal component is of order E),  and there 
is no horizontal boundary layer which can carry the E* mass flux in the radial 
direction. Meridional motion is axial as in the axisymmetric part. An interesting 
point, however, is that the axial motion is not confined to annular regions 
enveloping the source-sink distributions. This is due to the fact that the effect of 
viscosity and thermal conductivity plays an important role in the determination 
of the flow field. 

In  $2, we give the basic equations and boundary conditions of the problem. 
We discuss the axisymmetric and non-axisymmetric parts of the flow in $0 3 and 4, 
respectively. 

2. Basic equations 
Let us consider a system of cylindrical co-ordinates (P, 19,z") fixed with respect 

to a circular cylinder rotating with angular velocity s1 around the vertical 
(Z) axis, where tildes indicate physical (dimensional) quantities. If the tempera- 
ture of the cylinder is uniform and equal to Po and there is no source-sink distribu- 
tion, gas in the cylinder rotates rigidly with it. The pressure f i R  and density pR of 
this basic state of rigid-body rotation are as follows: 

@R = fiO'R7 pR = PO'RR, 170 = P O  RT07 (2.1) 

ER = exp (P2Q2/2RTo - gE/RPo), (2.2) 

where R is the gas constant, g the acceleration due to gravity and the suffixes 
0 and R refer to the point P = z" = 0 and to the basic state of rigid-body rotation, 
respectively. As in I, the ratio of the cylinder radius to the radial pressure scale 
height ( = P2Q2/2RpO) changes appreciably with P. For example, this ratio reaches 
20 when UF, at  50 "C is placed in a rotating circular cylinder with a peripheral 
velocity of 400 m/s. 

Using 6 as a measure of the magnitude of the perturbation, L as the radius of 
the cylinder and H as the half-height of the cylinder, we introduce the following 
non-dimensional variables: 

} (2.3) 
( r ,  2) = (P/L7 z"/H), ( U 7  v, W )  = (QL/~RTo) ( g r ,  Po7 HgJL) ,  

= (p-P0)/'08> = ( f i - f iR) /PR6,  p = (p"-pR)/pR87 

where (&, &, g2) is the dimensional velocity in cylindrical co-ordinates. It is to be 
noted that our present notation differs slightly from that in I. As a matter of 
course, however, the main procedures of the analysis are completely parallel. 
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By neglecting terms of higher order with respect to 6, we obtain linearized 
basic equations; 

where 

and P, is the Prandtl number, the ratio of the specific heats, ,u the viscosity, 
E the Ekman number, Go the ratio of the cylinder radius to the radial scale height 
on the side wall, G the ratio of the cylinder half-height to the vertical scale height, 
and A the aspect ratio, i.e. the ratio of the radius to the half-height of the cylinder. 
The above equations differ from those in I in that they inelude derivatives with 
respect to 8. If we assume that L = 10 cm, H = 50 cm, Q L  = 400 m/s, Po = 50 "C 
and p = 100mmHg on the side wall, we obtain E N G N Go N 20 
and A N 0.2. For the sake of simplicity, we restrict ourselves to the case G < E i  
as in I and neglect the effect of the gravity. 

The boundary conditions are 

(2.11) 

(2.12) 

wT(r,8) on z = 1, 0 < r < 1, 

on x =  -1, O < r  < 1, 

on r = l ,  - l < z < l .  

The source-sink distributions wT and wB can be decomposed as 

where (2.14) 

and suffixes X and N refer to the axisymmetric and non-axisymmetric parts, 
respectively. The flow is also decomposed correspondingly. We shall discuss the 
axisymmetric part in Q 3 and the non-axisymmetric part in 3 4. 
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3. Axisymmetric part 
The basic equations and the decomposition of the flow field into a main inner 

flow and boundary-layer flow are the same as those in I except that a side-wall 
boundary layer does not appear by our simplifying assumption. 

Main inner flow 

Because w is of order E4, the scaling is as follows: 

U ,  = E - k ,  V, = V ,  uji = E ~ w ,  

Ti= T ,  p.i = p ,  pi = p, 

where the SUEX i refers to the main inner flow, quantities with this suffix being of 
order unity. Substitution of (3.1) into the axisymmetric part of (2.4)-(2.9) yields 

aw,pz = 0, (3.2) 

where 

Standard elimination among (3.3)-(3.6) gives 

(3.3), (3.4) 

where f ( r )  = -ap/ar. (3.10) 

Equation (3.9) is the same as equation (3.9) of I, except for the right-hand side 
and the factor A2 multiplying a2q/az2.  The right-hand side corresponds to the 
driving of gas into and out of the cylinder and is crucial in the problem of source- 
sink flow. This term itself is to be determined by the boundary conditions on 
the cylinder wall. 

Horizontal boundary layers 

The scaling for the boundary-layer flow is as follows: 
A & = u ,  v = v ,  & =  E d w ,  !F = T, p ^ = p ,  @ =  E-1 ’’1 (3.11) 

r = E-&j(j - 2 )  (j = & l),  

where carets refer to the horizontal boundary layers, a n d j  = -t 1 to the top and 
bottom, respectively, the quantities with carets being of order unity. Substitu- 
tion of (3.1 1) into the axisymmetric version of (2.4)-( 2.9) gives 

(3.12) 

(3.13), (3.14) 
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(3.15) 

(3.16) 

p^+P = 0. (3.17) 

The boundary conditions on the horizontal walls are 
A 

4 = O+vi = T+Ti = 0 on x = 5 1, 0 < r < 1, (3.18u-c) 

(3.19) 

Elimination of from (3.14) and (3.16), subject to the boundary conditions as 

(3.20) 7 -+ CQ, gives 

Substitution of (3.3) and (3.20) into (3.18) yields 

0 = -Go !?/2hr. 

which show that the boundary conditions on the main inner flow and the 
boundary-layer flow can be determined from theradial pressure gradient. 

Elimination of 0 and f' from (3.13), (3.14) and (3.20) gives 

a4qa74 + 4g44 = 0, (3.22) 

where cr = {&( 1 + hr2)))/A. (3.23) 

The solution of this equation subject to (3.18a) and (3.21) is as follows: 

(3.24) 

(3.25) 

In  contrast to the solution in I, 112 and f' are symmetric with respect to z = 0. 
Thus, by (3.12), dj is antisymmetric with respect to x = 0. This reflects the fact 
that the present source-sink flow is driven by the radial pressure gradient related 
to the source and the sink whereas the flow in I is driven by the antisymmetric 
temperature gradient. Because of this symmetry character, (3.19) gives 

Wi = #WTS + was), 

= 0) = Sj(W,S - WBS).  

The function dj is obtained by integration of (3.12) as 

j 
4 4  1 + hr2)&, 

)) e-gq (cos a7 +sin h 
W =  

(3.26) 

(3.27) 

hr 
- 4 ( l + h r z ) ~ ( C 0 r f ~ 2 ) y  j f  e-*q sin ay. (3.28) 
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f = 2 4 1  + hr2)* (wTs - wBS). (3.29) 

Because f doesnot have a singularity at  r = 0, the integration of (3.29) is straight- 
forward: 

f=,-  2 (1 + hr2)* exp( - i ~ o r 2 ) ~ ~ s ( w T ~ - w ~ ~ ) e x p ( ~ G o ~ z ) ~ ~ .  (3.30) 

From (3.30) we can obtain f, and thus the boundary values of Ti, once the 
source-sink distributions ‘ I U ~ ~  and wBs on the top and the bottom have been 
prescribed. As for the boundary condition on the side wall, let us first verify that 
f ( r )  vanishes at r = 1 by the requirement of mass conservation. Provided that 

vanishes on the side wall, so does vi. If the source-sink velocity vanishes at  
r = 1, so does wi by (3.26). Because ui is of higher order with respect to E, the non- 
vanishing ui can be adjusted by the higher-order side-wall boundary layer. 
Therefore, the side-wall boundary condition a t  lowest order is 

c=O on r = 1 ,  - 1 ~ 2 ~ 1 .  (3.31) 

The solution for the main innerJlow 
Substitution of 

coshh,Z 
Ti = To(r)+ ,=I X COShh, %,(r) 

into (3.9) and (3.31) gives 

1 + 3hr2 
r 

( l+hrz )TA+-  Tk + A2h2,Tn = 0, 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

T o = T k =  0 on r =  1, (3.36) 

where primes denote differentiation with respect to r and A, is an eigenvalue to 
be determined by (3.36). 

Because To is finite at r = 0, the solution of (3.33) subject to (3.36) is 

with 

= hT,, + h2To, + O(h3), 

(3.37a) 

(3.37 b )  

(3.38) 

(3.39) 

where (3.37 b)  is an expansion, as in I, with respect to h. 
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Similar expansions of T, and h, with respect to h, 

T,(r) = hT,, + h2T,, + O(h3),  (3.40) 

An = A,, + hh,, + O(h2),  (3.41) 

give TLo + r -V;,  + A2hh2,, T,, = 0, (3.42) 

T:l + r-lTkl + A2hi, T,, = - 2A2A,,h,, Tno - 2rTk,, (3.43) 

T,, = T,, = 0 at r = 1. (3.44) 

Because (3.42)-(3.44) are the same as equations (4.6)-(4.8) of I, the solutions 
can be expressed as 

Tn, = anoJo(Ahnor), Tn,= (anl-+r2ano) J,(A%,r), (3.45) 

An0 = jonlA, An, = 1lAno2 (3.46) 

where J ,  is the zeroth-order Bessel function, jon  the nth zero of J,, and the con- 
stants a,, and a,, are to be determined from the boundary conditions (3.21) on 
the top and bottom. The boundary conditions (3.21) are expanded with respect 
to h as 

Ti = hrf/G,-F.2r."f/Go+O(h3) on z = ?I,  0 6 r < 1. (3.47) 

Substitution of (3.37)-(3.39), (3.32) and (3.40) into (3.47) gives 

(3.48) 

Because {Jo(jo,r)) is an orthogonal set of functions in 0 < r < 1, the coefficients 
a,, and anl can be calculated by standard methods. 

Substitution of the above results into (3.32) yields, after a little manipulation, 

4. Non-axisymmetric part 
Substitution of the scaling 

m m m J 
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into (2.4)-(2.9) gives 

(4.4) 

where primes indicate summation with respect to non-zero m, the suffix m refers 
to the mth complex Fourier coefficient, and quantities with a suffix m are of order 
unity, In these equations, terms of lowest order with respect to E are retained, 
G is omitted for the sake of simplicity and A is the version of the Laplacian corre- 
sponding to the mth complex Fourier coefficient. 

Because the zonal velocity is of order E4, there can exist no horizontal boundary 
Iayers which, for example, adjust the non-vanishing axial velocity component 
such that it vanishes on the boundary. This situation can be remedied as the effect 
of viscosity is retained in the zonal and axial cpmponents of the momentum 
equations and the thermal conductivity is retained in the energy equation [see 
(4.4)-(4.6)]. The boundary conditions (2.11) and (2.12) can be combined with the 
above system of equations to compose a well-posed problem. Elimination among 
the above equations gives 

Because the differentiation with respect to x is of fourth order, we can prescribe 
two boundary values on the top and the bottom. These are 

wTm on x =  1, 

wBm on z = - I ,  w m =  { 
(4.9) 

Because urn is of higher order with respect to E,  the boundary conditions on urn 
can be adjusted by higher-order horizontal boundary layers. Next, if w, vanishes 
on horizontal walls, so do vm and T, by (4.2) and (4.3). Therefore, the lowest-order 
boundary conditions on the side wall are 

wm=O on r = l ,  - 1 g z g i .  (4.10) 

Substitution of the expansion with respect to h, 

wpB = 7 - 0 ~ ~  + hw,, + -. . , 
into (4.8) gives us the lowest-order equation: 

~ a z w , , , l ~  = 0. 

(4.11) 

(4.12) 
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The solution of this equation can be written as 

W 

wmo = g1(') + ~ 2 ( r )  + C Jrn(AArnnT) {arnOnsinhEhrnn(z + 1)I 
n= 1 

+b,,,sinh[h,,(z- I)]}, (4.13) 

where J, is the mth-order Bessel function and A,,, a,,, and bmOn are coefficients 
to be determined by the boundary conditions. Substitution of (4.13) into (4.10) 
gives 

Sl( l )  = 92(1) = Jm(AAmn) = 0. (4.14) 

Prom this boundary condition, 
Amn = j m ,  nlA9 (4.15) 

where j,, is the nth zero of Jm. Before discussing the boundary conditions on 
the horizontal walls, let us note that {Jm(jm, n ~ ) }  is an orthogonal set of functions 
in 0 ,< r < 1, and the source-sink distribution can be expanded in this set: 

m 

Substitution of (4.13) into (4.9) gives 

The higher-order terms with respect to h can be obtained 
procedure. 

(4.16) 

(4.17) 

(4.18) 

by the same 

This paper is dedicated to Professor Isao Imai in celebration of his sixtieth 
birthday. The authors wish to express their thanks to Mr K. Hashimoto for his 
critical discussion of their results. 

Note. After the completion of this manuscript, a paper by Nakayama & Usui 
(1974) reporting similar theoretical work on source-sink flow in a gas centrifuge 
appeared. They treated the case of point injection, and their mathematical treat- 
ment is concentrated on the flow in the vertical shear layer. Our present study, 
in contrast, treats the case of injection over a finite area, and our mathematical 
treatment is concentrated on the main inner flow subject to the effect of a 
non-axisymmetric distribution of sources and sinks. 
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